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Abstract: The Discretization, as a data preprocessing technique, hasplayed an important role in many areas such as
artificial intelligence, data mining and machine learning.In this paper, we propose the use of evolutionary
algorithms to select a subset of cut points that defines the best possible discretization scheme of a data set. First,
we identify the boundary points for each input attribute andthen we establish the individual representation as
the joining of all of them, forming bit-strings based chromosomes. In addition, we consider an inconsistency
based fitness function for measuring the quality of the chromosomes during the evolutionary cycle. The CHC
model is adopted as evolutionary approach, showing that it can bring higher accuracy to the discretization
process. The proposal has been compared with other state-of-the-art and recent discretizers on 20 real data
sets and the experiments show that our proposed algorithm generates competitive discretization schemes in
terms of accuracy, for both C4.5 and Naive Bayes classifiers,but using a lower number of cut points.

1 INTRODUCTION

In the successful application of most of machine
learning tools, the quality of the databases is very in-
fluential. Therefore, data preparation is a crucial re-
search topic for this (Pyle, 1999). Discretization, as
one of the basic data reduction techniques, has re-
ceived increasing research attention in recent years
(Yang et al., 2010) and has become one of the most
broadly used preprocessing technique that is applied
in machine learning. The discretization process con-
verts continuous attributes into discrete ones by yield-
ing intervals in which the attribute value can reside
instead of singleton values, and by associating a dis-
crete, numerical value with each interval (Liu et al.,
2002).

Existing discretization techniques can be classi-
fied into two main categories, top-down (splitting)
and bottom-up (merging). Top-down methods (Kur-
gan and Cios, 2004) start from the initial interval
and recursively split it into smaller intervals, while
bottom-up mechanisms begin with the set of single
value intervals and iteratively merge adjacent inter-
vals (Kerber, 1992). A good taxonomy can be found

in (Liu et al., 2002), where discretizers are also cat-
egorized in Static/Dynamic, Univariate/Multivariate,
Supervised/Unsupervised, Global/Local and Di-
rect/Incremental. Among others, classical and well
known discretizers are ChiMerge (Kerber, 1992), Zeta
(Ho and Scott, 1997) and Chi2 (Liu and Setiono,
1997). Some recent proposed techniques are CAIM
(Kurgan and Cios, 2004), MODL (Boullé, 2006) and
PKID (Yang and Webb, 2009).

Evolutionary Algorithms (EAs) have been used
for data preparation with promising results (Freitas,
2002). In discretization, few approaches can be found
in the literature. The most important development in
this area was done in (Flores et al., 2007), where an
estimation of distribution algorithm is used for opti-
mizing a Naive Bayes wrapper based discretizer.

In this contribution, we attempt to use EAs for
optimal cut points selection in discretization. Our
objective is to maximize the accuracy of the subse-
quent classification process and also to minimize the
number of cut points required. For this, we perform
an evolutionary selection of boundary points (Elomaa
and Rousu, 1999) by using binary chromosome repre-
sentation and an inconsistency based fitness function.
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We compare our approach with other discretizers con-
sidering two classifiers, C4.5 and Naive Bayes, which
are considered two of the most influential data min-
ing algorithms (Wu and Kumar, 2009). The empirical
study consists of 20 real data sets, 15 discretizers for
comparison and analysis based on non-parametric sta-
tistical testing (Sheskin, 2007).

The rest of the contribution is organized as fol-
lows: Section 2 gives a brief summary of basic con-
cepts regarding discretization. In Section 3, the evolu-
tionary selection of cut points is explained. In Section
4, we provide the experimentation framework, the re-
sults obtained and an analysis over them. Finally, Sec-
tion 5 concludes the paper.

2 DISCRETIZATION

Let TRbe a training set withN instances which con-
sists of pairs(xi ,yi), i = 1, . . . ,N, wherexi defines
an input vector of attributes andyi defines the cor-
responding class label. Each of theN instances hasM
input attributes,Mn are numerical andMc are categor-
ical or nominal.

A refers to any of theMn continuous attributes in
the data set. A discretization algorithm partitions the
continuous attributeA into kA discrete and disjoint in-
tervals:

DA = {[d0,d1],(d1,d2], . . . ,(dkA−1,dkA]} (1)

whered0 is the minimal value,dkA is the maximal
value anddi < di+i , for i = 0,1, . . . ,kA − 1. Such a
discrete resultDA is called a discretization scheme on
attributeA andPA = {d1,d2, . . . ,dkA−1} is the set of
cut points of attributeA. Hence, the joint discretiza-
tion for all attributes defines the complete set of cut
pointsP:

P=
Mn⋃

A=0

PA (2)

If the discretizer isunivariate, it chooses to
search an optimalPA for each attribute independently,
whereas amultivariatediscretizer attempts to find the
best completeP. Few discretizers are proposed as
multivariate due to the high complexity of the resulted
search space. The search space is defined by the set of
all thecandidate cut pointsfor each attribute, which is
basically all the different numerical values registered
in TR, considering each attribute separately.

In order to alleviate the complexity reducing the
initial search space, theboundary pointconcept is de-
fined. The set ofboundary pointis a subset of candi-
date points. Let a sequenceS of examples be sorted

by the value of a numerical attributeA. The set of
boundary pointsis defined as follows:

• The maximum value inS is a boundary point.

• A value T ∈ Dom(A) is a boundary point if and
only if there exists a pair of examplesu,v ∈ S,
having different classes, such thatvalA(u) = T <
valA(v); and there does not exist another example
w∈ Ssuch thatvalA(u)< valA(w)< valA(v).

Thus, the set of boundary points for attributeA is
denoted asBPA, andBP denotes for the complete set
of them. It is proved that optimal splits always fall on
boundary points for most of the evaluation measures
used (Elomaa and Rousu, 1999). Hence, substantial
reductions in time consumption can be obtained, since
only the boundary points need to be considered as
candidate cut points.

3 EVOLUTIONARY SELECTION
OF CUT POINTS

The selection of cut points in discretization can be
considered as a search problem in which EAs can be
applied. Our approach will be denoted by Evolution-
ary Cut Points Selection for Discretization (ECPSD).
We take into account two important issues: the speci-
fication of the representation of the solutions and the
definition of the fitness function.

• Representation: The search space associated is
constituted by all the possible subsets ofBP. This
is accomplished by using a binary representation.
A chromosome consists of|BP| genes (one for
each boundary cut point inBP) with two possi-
ble states: 0 and 1. If the gene is 1, its associated
cut point is included inP, which is represented by
the chromosome. If it is 0, this does not occur.

• Fitness Function: Let P be a subset of cut points
selected fromBPand be coded by a chromosome.
We define a fitness function as the aggregation of
two sub-objectives, namely the inconsistency of
the data and the minimization of the number of
cut points.

Fitness(P) = α · Inconsistency+(1−α) ·
|P|
|BP|

(3)
where|P| is the number of cut points currently se-
lected in the chromosome,|BP| is the total num-
ber of boundary points andα is the weight fac-
tor which is specified as input parameter. Thein-
consistencyis a supervision-based measure used
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to compute the number of unavoidable errors pro-
duced in the data set. An unavoidable error is one
associated to two examples with the same values
for input attributes and different class labels. In
general, data sets with continuous attributes are
consistent, but when a discretization scheme is ap-
plied over the data, an inconsistent data set may be
obtained. The desired inconsistency level that a
discretizer should obtain is 0.0. In our case, the
inconsistency measure is computed as the sum-
mation of inconsistency instances present in the
training set divided by the total number of in-
stances.
The objective of the EA is to minimize the fitness
function defined; therefore, to obtain consistent
discretization schemes with the minimum possi-
ble number of cut points, thus enhancing its sim-
plicity.

As the evolutionary computation method, we have
used the CHC model (Eshelman, 1990). CHC is a
classical evolutionary model that introduces different
features to obtain a trade-off between exploration and
exploitation; such as incest prevention, reinitializa-
tion of the search process when it becomes blocked
and the competition among parents and offspring into
the replacement process. During each generation the
CHC develops the following steps:

• It uses a parent population of the same size as the
original to generate an intermediate population,
which are randomly paired and used to generate
the potential offspring.

• Then, a survival competition is held where the
best chromosomes from the parent and offspring
populations are selected to form the next genera-
tion, keeping the fixed size of the population.

CHC also implements an heterogeneous recombi-
nation using HUX, a special recombination operator.
HUX exchanges half of the bits that differ between
parents, where the bit position to be exchanged is ran-
domly determined. CHC also employs a method of
incest prevention. Before applying HUX to the two
parents, the Hamming distance between them is mea-
sured. Only those parents who differ from each other
by some number of bits (mating threshold) are mated.
The initial threshold is set atL/4, whereL is the
length of the chromosomes. If no offspring are in-
serted into the new population then the threshold is
reduced by one.

No mutation is applied during the recombination
phase. Instead, when the population converges or
the search stops making progress (i.e., the differ-
ence threshold has dropped to zero and no new off-
spring are being generated which are better than any

Table 1: Summary description for classification data sets.

Data Set #Ex. #Atts. #Num. #Nom. #Cl.

appendicitis 106 7 7 0 2

autos 205 25 15 10 6

bands 539 19 19 0 2

bupa 345 6 6 0 2

cleveland 303 13 13 0 5

contraceptive 1,473 9 9 0 3

crx 690 15 6 9 2

dermatology 366 34 34 0 6

ecoli 336 7 7 0 8

flare-solar 1066 9 9 0 2

glass 214 9 9 0 7

haberman 306 3 3 0 2

iris 150 4 4 0 3

mammographic 961 5 5 0 2

newthyroid 215 5 5 0 3

saheart 462 9 8 1 2

specfheart 267 44 44 0 2

tae 151 5 5 0 3

wine 178 13 13 0 3

wisconsin 699 9 9 0 2

Table 2: Parameters of the discretizers and classifiers.

Method Parameters
C4.5 pruned tree, confidence = 0.25,

2 examples per leaf
Chi2 inconsistency threshold = 0.02
ChiMerge confidence threshold = 0.05
FUSINTER α = 0.975,λ = 1
MODL optimized process type
ECPSD population = 50, eval. = 10,000

α = 0.5

member of the parent population) the population is
reinitialized to introduce new diversity to the search.
The chromosome representing the best solution found
over the course of the search is used as a template to
reseed the population. Reseeding of the population is
accomplished by randomly changing 35% of the bits
in the template chromosome to form each of the other
new chromosomes in the population. The search is
then resumed.

4 EXPERIMENTAL
FRAMEWORK AND RESULTS

This section describes the methodology followed in
the experimental study which compares the proposed
technique with other discretization algorithms. We
will explain the configuration of the experiment: used
data sets and parameters of the discretizers. The
discretizers involved in the comparison are: Ameva
(González-Abril et al., 2009), CACC (Tsai et al.,
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Table 3: Average accuracy obtained for C4.5.

Ameva CACC CAIM Chi2 ChiMerge DIBD E-Width Ext-Chi2 FUSINTER Hellinger Khiops Mod-Chi2 MODL PKID Zeta ECPSD

appendicitis 0.8336 0.8336 0.8336 0.8127 0.8336 0.8418 0.7836 0.8018 0.8236 0.8509 0.8427 0.7855 0.8309 0.8018 0.82360.8518
autos 0.7549 0.7500 0.7263 0.7599 0.7474 0.7784 0.7308 0.6765 0.7937 0.7998 0.8096 0.7897 0.7033 0.7670 0.7349 0.7456
bands 0.6700 0.6605 0.6458 0.6624 0.6346 0.6605 0.6493 0.5491 0.5975 0.6363 0.6197 0.6642 0.6569 0.6197 0.63820.6327
bupa 0.6807 0.6265 0.6065 0.5822 0.6361 0.6689 0.5886 0.6173 0.6198 0.6192 0.6323 0.5704 0.5889 0.5789 0.57420.6724
cleveland 0.5574 0.5146 0.5484 0.5778 0.5482 0.5644 0.5681 0.5445 0.5640 0.5551 0.5580 0.5471 0.5675 0.5345 0.5346 0.5545
contraceptive 0.4909 0.4970 0.5105 0.5010 0.5506 0.4290 0.4943 0.5187 0.5221 0.4990 0.4840 0.5045 0.5290 0.4875 0.53160.5595
crx 0.8551 0.8522 0.8739 0.8594 0.8667 0.8696 0.8478 0.8681 0.8797 0.8652 0.8768 0.8768 0.8507 0.8522 0.86670.8594
dermatology 0.9535 0.9533 0.9318 0.9070 0.9424 0.9178 0.9291 0.9506 0.9508 0.9318 0.9152 0.9589 0.9508 0.9454 0.9369 0.9289
ecoli 0.7082 0.7915 0.7469 0.7291 0.7708 0.7859 0.6940 0.7175 0.7503 0.7202 0.7205 0.7381 0.7530 0.66030.7921 0.7378
flare 0.6782 0.6782 0.6782 0.6764 0.6782 0.5525 0.6754 0.6633 0.6735 0.6754 0.6754 0.6754 0.6792 0.6754 0.6754 0.6754
glass 0.5305 0.3557 0.6761 0.6812 0.6814 0.6348 0.6427 0.6927 0.6679 0.5938 0.7015 0.6280 0.6950 0.5788 0.63490.7038
haberman 0.7413 0.7349 0.7512 0.7353 0.7347 0.7219 0.7256 0.7353 0.7251 0.7319 0.7219 0.7353 0.7087 0.7353 0.7512 0.7188
iris 0.9333 0.9333 0.9333 0.9467 0.9333 0.7867 0.94670.9533 0.9400 0.8467 0.9267 0.9333 0.9400 0.9267 0.93330.9400
mammographic 0.8159 0.8221 0.8284 0.8210 0.8325 0.7856 0.8044 0.8304 0.8263 0.8221 0.8252 0.8200 0.8179 0.8117 0.8273 0.8023
newthyroid 0.9253 0.9253 0.9351 0.9210 0.9444 0.9022 0.8649 0.8749 0.9165 0.9169 0.9303 0.9398 0.9305 0.9398 0.9353 0.9400
saheart 0.6991 0.6537 0.7055 0.7036 0.7080 0.6818 0.68850.7121 0.6450 0.6906 0.6689 0.6971 0.6409 0.6580 0.70110.6905
specfheart 0.8050 0.7642 0.7785 0.7530 0.7829 0.7678 0.7681 0.7947 0.7496 0.7905 0.7718 0.7752 0.7531 0.7942 0.78690.7604
tae 0.4454 0.4838 0.4583 0.5296 0.5433 0.3725 0.4854 0.5296 0.5113 0.5629 0.5233 0.5296 0.4579 0.4708 0.51710.5442
wine 0.9382 0.9265 0.9101 0.8252 0.90420.9490 0.8922 0.6343 0.9379 0.9036 0.8641 0.9268 0.8984 0.7974 0.9212 0.8706
wisconsin 0.9371 0.9371 0.9385 0.9513 0.95140.9557 0.9528 0.9470 0.9456 0.9542 0.9456 0.9471 0.9442 0.9384 0.9456 0.9427

MEAN 0.7477 0.7347 0.7508 0.7468 0.7612 0.7313 0.7366 0.7306 0.7520 0.7483 0.7507 0.7521 0.7448 0.7287 0.7531 0.7566

2008), CAIM (Kurgan and Cios, 2004), Chi2 (Liu and
Setiono, 1997), ChiMerge (Kerber, 1992), DIBD (Wu
et al., 2007), E-Width (Liu et al., 2002), Ext-Chi2 (Su
and Hsu, 2005), FUSINTER (Zighed et al., 1998),
Hellinger (Lee, 2007), Khiops (Boullé, 2004), Mod-
Chi2 (Tay and Shen, 2002), MODL (Boullé, 2006),
PKID (Yang and Webb, 2009) and Zeta (Ho and Scott,
1997).

The classifiers used are C4.5 (Quinlan, 1993) and
Naive Bayes (Cios et al., 2007). Implementations of
these algorithms can be found under the KEEL data
mining tool (Alcalá-Fdez et al., 2009).

4.1 Experimental Framework

Performance of the algorithms is analyzed by using
20 data sets taken from the UCI Machine Learning
Database Repository (Frank and Asuncion, 2010).
The main characteristics of these data sets are sum-
marized in Table 1. For each data set, it shows the
number of examples (#Ex.), the total number of at-
tributes (#Atts.), which some of the could be numer-
ical (#Num.), or nominal (#Nom.) and the number
classes (#Cl). The data sets considered are partitioned
using theten fold cross-validation (10-fcv)procedure.
The parameters of the discretizers and classifiers are
presented in Table 2.

4.2 Results and Analysis

Tables 3 and 4 show the accuracy in test data obtained
by C4.5 and Naive Bayes, respectively, when using
different discretization approaches. The best case in
each data set is highlighted in bold. Table 5 shows the
average cut points selected by each discretizer.

Observing the mentioned tables, we can make the
following analysis:

• In terms of accuracy, ECPSD is the second best

option when using C4.5 as classifier. When con-
sidering Naive Bayes, ECPSD can be situated in
half of the set of methods in terms of accuracy.

• The number of cut points yielded by ECPSD is
the lowest in average.

• A remarkable case in point is observed in thecon-
traceptivedata set. ECPSD only requires 4 cut
points to offer the best accuracy with C4.5 and
Naive Bayes. In some data sets, i.e.appendicitis
andflare, the proposal provides a very good trade-
off of accuracy and number of cut points.

We have included a second type of analysis ac-
complishing a statistical comparison of methods over
multiple data sets. The non-parametric Wilcoxon
Signed-Ranks Test (Sheskin, 2007) is used for con-
ducting pairwise comparison between our proposal
and the rest of the techniques. Table 6 collects the
results offered by the Wilcoxon test. This table is
divided into three parts, each one associated with
columns: In the first and second parts, the measure
of accuracy classification in test is used for C4.5 and
Naive Bayes, respectively. In the third part, we ac-
complish the Wilcoxon test by using as performance
measure the number of cut points produced by the dis-
cretizers. In each part, our proposed method is com-
pared againstNa rows whereNa is the number of dis-
cretizers compared in this study. In each one of the
cells it can appear three symbols: +, = or -. They
represent that the proposal outperforms (+), is similar
(=) or is worse (-) in performance than the discretizer
which appears in the column (Table 6). The value in
brackets is the p-value obtained in the comparison and
the level of significance considered isα = 0.10.

• Statistically, no method can be considered better
than our proposal ECPSD in accuracy. It also
outperforms four discretizers:E-WidthandPKID
for C4.5,DIBD for Naive Bayes andExt-Chi2for
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Table 4: Average accuracy obtained for Naive Bayes.

Ameva CACC CAIM Chi2 ChiMerge DIBD E-Width Ext-Chi2 FUSINTER Hellinger Khiops Mod-Chi2 MODL PKID Zeta ECPSD

appendicitis 0.8800 0.8800 0.8709 0.8618 0.8518 0.8800 0.8109 0.8018 0.8418 0.8609 0.8709 0.8518 0.8609 0.8609 0.8618 0.8709
autos 0.6729 0.7114 0.6497 0.5803 0.6603 0.6142 0.6333 0.6156 0.6580 0.6139 0.6219 0.6488 0.72280.7269 0.6379 0.6054
bands 0.7255 0.7031 0.6643 0.7124 0.6715 0.6493 0.6567 0.5992 0.7013 0.6457 0.6810 0.7235 0.7013 0.6865 0.65130.6160
bupa 0.6599 0.6397 0.6169 0.6519 0.6130 0.6130 0.5853 0.6316 0.6427 0.6246 0.6321 0.6376 0.6293 0.6277 0.59430.6902
cleveland 0.5778 0.5610 0.5612 0.5781 0.5449 0.5276 0.5812 0.5746 0.5580 0.5646 0.5615 0.5482 0.5477 0.5544 0.57430.5874
contraceptive 0.5064 0.5186 0.4963 0.5004 0.5255 0.4535 0.5085 0.5126 0.5132 0.5099 0.5099 0.5024 0.5241 0.5092 0.51790.5595
crx 0.8551 0.8406 0.8609 0.8478 0.8638 0.8507 0.8609 0.8304 0.8449 0.8667 0.8507 0.8420 0.8290 0.8522 0.86380.8565
dermatology 0.9810 0.9811 0.9755 0.9454 0.9755 0.9536 0.9728 0.9837 0.9783 0.9729 0.9511 0.9865 0.9838 0.9782 0.9783 0.9453
ecoli 0.8127 0.8275 0.8094 0.8215 0.8213 0.8094 0.8160 0.7919 0.8332 0.8068 0.7974 0.7948 0.8274 0.80380.8335 0.8098
flare 0.6557 0.6576 0.6557 0.6548 0.6539 0.5488 0.6632 0.6558 0.6576 0.6539 0.6641 0.6529 0.6632 0.6548 0.66790.6754
glass 0.4647 0.3557 0.7034 0.7061 0.6736 0.6534 0.6606 0.7109 0.6878 0.6432 0.6432 0.7199 0.7417 0.7246 0.6439 0.6832
haberman 0.7478 0.7351 0.7352 0.7220 0.7251 0.7219 0.7385 0.6990 0.7382 0.7384 0.7348 0.7220 0.7057 0.72820.7545 0.7252
iris 0.9333 0.9400 0.9400 0.9467 0.9400 0.7667 0.9133 0.9400 0.9467 0.8467 0.9200 0.9333 0.9600 0.9200 0.9267 0.9400
mammographic 0.8148 0.8158 0.8262 0.8252 0.8086 0.7919 0.7950 0.8252 0.8315 0.8263 0.8294 0.8263 0.8346 0.8325 0.8283 0.8023
newthyroid 0.9535 0.9535 0.9582 0.9437 0.9673 0.9537 0.9210 0.8749 0.9725 0.9115 0.9355 0.9582 0.9675 0.9675 0.96750.9446
saheart 0.6582 0.6689 0.7035 0.6709 0.7249 0.6604 0.6991 0.6968 0.6451 0.6840 0.6670 0.6777 0.6364 0.6756 0.7100 0.6818
specfheart 0.7644 0.7530 0.7682 0.7645 0.7345 0.7272 0.6893 0.7608 0.7756 0.7566 0.7789 0.7496 0.7454 0.7752 0.7681 0.7717
tae 0.5113 0.5042 0.4904 0.5504 0.5046 0.3658 0.4988 0.5238 0.4771 0.5113 0.5029 0.5571 0.4779 0.4904 0.5038 0.5242
wine 0.9830 0.9771 0.9775 0.8134 0.9830 0.9830 0.9549 0.6510 0.9663 0.9039 0.9771 0.9598 0.9608 0.9663 0.97190.9268
wisconsin 0.9671 0.9671 0.9671 0.9628 0.9700 0.9728 0.9714 0.9714 0.9742 0.9728 0.9742 0.9714 0.9714 0.9728 0.9657 0.9427

MEAN 0.7563 0.7495 0.7615 0.7530 0.7606 0.7248 0.7465 0.7326 0.7622 0.7457 0.7552 0.7632 0.76460.7654 0.7611 0.7579

Table 5: Average number of cut points.

Ameva CACC CAIM Chi2 ChiMerge DIBD E-Width Ext-Chi2 FUSINTER Hellinger Khiops Mod-Chi2 MODL PKID Zeta ECPSD

appendicitis 8.30 8.60 8.00 24.00 8.00 8.00 8.00 1.00 16.70 8.00 17.80 35.00 64.80 64.00 8.00 8.20
autos 79.30 263.30 76.20 10.90 75.80 66.50 76.00 4.70 42.40 76.00 63.80 27.20 109.10 183.80 76.00 15.70
bands 34.80 67.80 20.00 27.00 19.80 17.80 52.00 11.50 78.70 58.00 79.10 53.40 63.80 235.40 20.00 25.60
bupa 10.70 30.40 7.00 41.80 7.00 8.40 13.00 17.30 33.10 13.00 32.00 111.80 48.60 91.10 7.00 22.50
cleveland 53.10 165.30 37.90 16.10 33.10 21.10 34.10 13.70 16.40 50.00 28.20 34.70 27.30 90.00 53.00 22.30
contraceptive 19.00 13.40 16.00 42.50 16.00 8.00 35.80 39.70 23.80 54.00 40.90 41.20 16.20 53.00 19.00 4.00
crx 9.40 261.80 7.00 4.90 6.50 12.50 28.00 3.40 44.80 31.00 36.80 92.20 211.60 114.20 7.00 12.10
dermatology 171.00 43.00 101.90 22.40 72.90 29.10 74.40 28.90 46.40 167.90 67.20 37.40 42.20 107.80 171.00 7.70
ecoli 49.30 12.20 37.90 34.60 37.20 15.00 37.00 72.90 11.70 41.90 22.00 62.50 23.70 82.00 49.30 20.00
flare 10.20 11.40 10.00 14.70 10.00 2.00 12.00 8.30 7.50 39.70 8.40 13.90 7.20 13.00 10.00 3.00
glass 55.00 1.00 55.00 32.90 52.80 42.20 48.00 18.00 14.10 55.00 10.00 51.10 35.30 96.40 55.00 28.10
haberman 6.60 10.90 4.00 46.90 4.00 3.20 4.00 43.50 11.20 4.00 14.20 46.60 11.00 36.00 4.00 3.00
iris 9.00 8.00 9.00 11.70 9.00 8.50 9.00 18.10 10.10 9.00 17.00 27.30 10.70 44.60 9.00 3.30
mammographic 6.10 6.40 6.00 50.20 6.00 6.10 19.00 42.10 12.60 31.00 22.60 47.50 13.60 43.00 6.00 2.50
newthyroid 11.00 10.00 11.00 9.10 11.00 9.80 11.00 5.20 14.60 11.00 19.80 16.30 17.70 65.70 11.00 5.80
saheart 12.70 278.40 9.00 32.70 9.00 16.50 25.00 3.70 50.80 25.00 53.90 54.10 385.60 145.70 9.00 33.90
specfheart 63.40 142.60 45.00 21.40 44.90 42.40 45.00 7.90 124.30 45.00 201.00 30.90 50.30 616.90 45.00 27.10
tae 15.70 50.00 9.00 66.90 9.00 4.60 9.00 52.80 15.20 11.00 15.20 70.40 30.60 33.10 11.0013.30
wine 27.00 19.40 27.00 4.90 26.90 26.80 27.00 2.50 44.20 27.00 48.10 13.80 61.60 157.00 27.00 15.80
wisconsin 10.00 10.00 10.00 7.90 10.00 23.90 30.90 16.30 22.60 46.00 51.50 20.40 26.00 71.20 10.00 3.10

MEAN 33.08 70.70 25.35 26.18 23.45 18.62 29.91 20.58 32.06 40.18 42.48 44.39 62.85 117.20 30.37 13.85

both classifiers.

• The Wilcoxon test confirms that ECPSD is bet-
ter than all the other discretizers, exceptDIBD
andExt-Chi2when considering the number of cut
points.

• The preferred option considering the trade-off
accuracy/simplicity can be established as the
ECPSD. It needs to make a lower number cut
points than the discretizers which are similar in
accuracy, and outperforms in accuracy the dis-
cretizers with similar performance in simplicity.

5 CONCLUDING REMARKS

The purpose of this contribution is to present a pro-
posal named Evolutionary Cut Points Selection Al-
gorithm for discretization. The results shows that
our proposal allows us to yield good discretization
schemes which have been tested over C4.5 and Naive
Bayes. We have checked that the proposal obtains

Table 6: Wilcoxon’s test results over accuracy for C4.5 and
Naive Bayes and number of cutpoints.

Discretizer Acc. C4.5 Acc. NB Num. CP
Ameva = (0.92) = (1.00) + (0.003)
CACC = (0.27) = (0.90) + (0.001)
CAIM = (0.65) = (1.00) + (0.019)
Chi2 = (0.24) = (0.47) + (0.009)
ChiMerge = (1.00) = (1.00) + (0.029)
DIBD = (0.24) + (0.05) = (0.187)
E-Width + (0.08) = (0.43) + (0.001)
Ext-Chi2 + (0.08) + (0.08) = (0.385)
FUSINTER = (0.42) = (1.00) + (0.001)
Hellinger = (0.96) = (0.15) + (0.001)
Khiops = (0.16) = (0.54) + (0.001)
Mod-Chi2 = (1.00) = (1.00) + (0.000)
MODL = (0.25) = (1.00) + (0.000)
PKID + (0.02) = (1.00) + (0.000)
Zeta = (0.84) = (1.00) + (0.014)

very competitive results, because it often requires a
lower number cut points than the yielded by the com-
pared discretizers and outperforms in accuracy those

A PRELIMINARY STUDY ON SELECTING THE OPTIMAL CUT POINTS IN DISCRETIZATION BY
EVOLUTIONARY ALGORITHMS
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with similar simplicity capabilities.
As future work, we will improve the computa-

tionally demand required by our approach in order to
tackle larger data sets.
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